Arkansas Division of Environmental Quality Water Quality Management Plan Update Summary Sheet

Date: April 12, 2021	Prepared by: Shane Byr	um	
New Permit	Renewal Permit	Amer	nded Permit
Type of Discharge:	Municipal Wastewater		
Facility Name:	City of Melbourne		
Permit No.:	AR0020036		
Flow Rate (MGD):	0.41		
Receiving Stream:	Mill Creek, thence to Piney Creek, the	ence to the W	hite River
Assessment Unit:	AR_11010004_907	7Q10:	0 cfs ¹
Planning Segment:	4F	County:	Izard

Proposed Monthly Average Effluent Limits in mg/L:

May-October:	10/15/3.9/6.0*/	<mark>0.011</mark> **	(CBOD5	/TSS/	NH3-N/	DO/	(<mark>TRC</mark>)
November-March:	<mark>20</mark> /30/ <mark>3.9</mark> /7.0*/	0.011 <mark>**</mark>	(<mark>CBOD5</mark>	/TSS/	<mark>NH3-N</mark> /	′ <mark>DO</mark> /	(<mark>TRC</mark>)
April:	<mark>20</mark> /30/3.9/ <mark>7.0</mark> */	<mark>0.011</mark> **	(<mark>CBOD5</mark>	/TSS/	NH3-N/	/ <mark>DO</mark> /	(<mark>TRC</mark>)

*DO is Inst. Min. **TRC is Inst. Max.

Current Monthly Average Effluent Limits in mg/L:

May-October:	10/15/3.9/6.0	(CBOD5/TSS/NH3-N/DO)
November-March:	25/30/10.3/6.0	(CBOD5/TSS/NH3-N/DO)
April:	25/30/3.9/6.0	(CBOD5/TSS/NH3-N/DO)

*DO is Inst. Min.

TMDL Limits: None

Justification (Sag = Minimum Modeled Value ≠ Difference in Value):

				Distance			Distance
		DO	DO	to DO	DO	DO	to DO
Reach	Length	WQS _C	Sag _C	Sag _C	WQS _P	Sag _P	Sag _P
No.	(miles)	(mg/L)	(mg/L)	(miles)	(mg/L)	(mg/L)	(miles)
1	0.8	2.0	5.4	0.2	6.0	6.0	0.3
2	0.2	5.0	6.0	0.0	6.0	6.2	0.0

Values in above table are from modeling analysis dated April 12, 2021.

Outfall Location (Lat/Long): 36° 3' 33.7" N; 91° 55' 37.4" W

¹ USGS StreamStats web-based program.

Remarks:

This is for the reissuance of the discharge permit for this existing facility. An updated model was performed with updated stream hydraulics and updated SOD rates. Based on the updated model, the following 208 Plan updates are being made with this permit renewal:

- 1. The monthly average $CBOD_5$ limit during November-April is being revised from 25 to 20 mg/l.
- The monthly average NH₃-N limit during November-March is being revised from 10.3 to 3.9 mg/l.
 The instantaneous minimum DO limit during November-April is being revised from 6.0 to 7.0 mg/l.
- 4. A year-round instantaneous maximum TRC limit of 0.011 mg/l is being added.

			Ammonia Calculations			
POTW?	Yes	(Yes or No)			COLOR KEY	
Facility Name	City of Melbourne	, ,				User Inputs
Major or Minor	Minor					Calculated values
Permit Number	AR0020036					
Receiving Stream	Mill Creek		Ecoregion or River name	Ozark Highlands		
7Q10, cfs	0	USGS StreamStats	Watershed area (mi ²)	6.38		
0.25/0.67 multiplier	0.67		Regulation No. 2 Chronic	Toxicity Critieria (Instr	eam Concentration)	
Qb, cfs	0.00		-	AML, mg/l	DML, mg/l	
Qe, MGD	0.41	Design flow	April	3.9	3.9	
Qe, cfs	0.63		May - October	3.9	3.9	
Cb, mg/l	0.1	Model input upstream	November - March	10.3	10.3	
Allowable Effluent C	onc., mg/l					
(Qe * Ce) + (Qb* Cb) = (Qe + Qb) * IWC			Allowable Effluent	Conc. (Ce), mg/l	
Qe	Effluent Flow			Ce = (IWC (Qe + Q	b) - Cb X Qb) / Qe	
Ce	Allowable Effluent Concen	tration			Monthly Avg.,mg/l	7-Day Avg, mg/l
Qb	% of Low Flow of Receivin	g Stream		April	3.9	3.9
Cb	Background Concentration			May - October	3.9	3.9
IWC	Instream Waste Concentra	tion Chronic Toxic	ity Criteria	November - March	10.3	10.3
Chronic Toxicity C	riteria vs. D.O. Model Limi	its				
	Monthly Average, n	ng/l	Permit Limits	7-Day Ave	erage, mg/l	Permit Limits
Month	Toxicity limit	D.O. limit		Toxicity limit	D.O. limit	
April	3.9	3.9	3.9	3.9	5.9	3.9
May - October	no fishery	3.9	3.9	no fishery	5.9	5.9
November - March	10.3	3.9	3.9	10.3	5.9	5.9

			Ammonia Toxic	ity Criteria
Minor Permits				
Fish Early Life Stages Absent - Primary Sea	son (November	- March), m	g/L	
Ecoregion	Temperature	pН	4-day average	30-day average
Arkansas River	14	7.6	10.3	10.3
Arkansas River Valley	14	6.7	16.7	16.7
Boston Mountains	14	6.9	15.8	15.8
Delta	14	7.1	14.7	14.7
Gulf Coastal Plains	14	6.6	17	17
Ouachita Mountains	14	7.1	14.7	14.7
Ouachita River (L. Missouri to LA state line)	14	6.7	16.7	16.7
Ozark Highlands	14	7.6	10.3	10.3
Red River	14	7.5	11.3	11.3
White River (Dam #1 to Mouth)	14	7.7	9.3	9.3
Fish Early Life Stages Present - Critical Sea	son (April - Octo	ober), mg/L		
Ecoregion	Temperature	pН	4-day average	30-day average
Arkansas River	32	7.6	3.2	3.2
Arkansas River Valley	31	6.7	5.6	5.6
Boston Mountains	31	6.9	5.3	5.3
Delta	30	7.1	5.2	5.2
Gulf Coastal Plains	30	6.6	6.1	6.1
Ouachita Mountains	30	7.1	5.2	5.2
Ouachita River (L. Missouri to LA state line)	32	6.7	5.2	5.2
Ozark Highlands	29	7.6	3.9	3.9
Red River	32	7.5	3.5	3.5
White River (Dam #1 to Mouth)	32	7.7	2.9	2.9

Basin Characterist	lics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	6.38	square miles

Statistic	Value	Unit
Probability zero flow 7Day	0.102	dim

Since probability of zero flow is greater than 0.1, then 7Q10 = 0 cfs.

Mill Creek at confluence with White Oak Branch = 10.1 sq mi

This is designated Reach 1b in the model. This reach designates the point where DO water quality standard changes from 2 mg/l to 5 mg/l. This point occurs approximately 0.8 miles downstream of the Melbourne outfall.

Volume II: Data Analysis 1987

State of Arkansas

Department of Pollution Control and Ecology

Sediment Oxygen Demand (SOD) for Various Temperatures and Ecoregion 5

Critical season

Primary season

			Rocky Su	ubstrate⁴			Applicable Ecoregions ⁶
	TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₂₉	SOD ₃₀	SOD ₃₁	Ozark Highlands
ſ	15 ²	0.3	0.34	0.51	0.54	0.57	Boston Mountains
Γ	20 ²	0.5	0.56	0.84	0.90	0.95	Ouachita Mountains
-[30 ²	1.0	1.12	1.69	1.79	1.90	
Γ	45 ³	1.4	1.57	2.37	2.51	2.66	
	90 ³	1.8	2.02	3.04	3.22	3.42	
Γ			Mixed S	ubstrate			
	TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₂₉	SOD ₃₀	SOD ₃₁	Arkansas River Valley
Γ	15 ²	0.4	0.45	0.68	0.72	0.76	Gulf Coastal Plain
	20 ²	0.7	0.79	1.18	1.25	1.33	
Γ	30 ²	1.3	1.46	2.20	2.33	2.47	
	45 ³	1.6	1.80	2.70	2.87	3.04	
	90 ³	1.9	2.13	3.21	3.40	3.61	
			Sandy Su	ubstrate ⁴			
	TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₃₀	SOD ₃₁	SOD ₃₂	Arkansas River Valley
	15 ²	0.5	0.56	0.90	0.95	1.01	Gulf Coastal Plain
	20 ²	0.8	0.90	1.43	1.52	1.61	Delta
	30 ²	1.5	1.69	2.69	2.85	3.0	
	45 ³	1.8	2.02	3.22	3.42	3.62	
	90 ³	2.0	2.25	3.58	3.80	4.02	

¹ Projected TSS instream after mixing.

² TSS values are from MOA with EPA found in the CPP. SOD values for rocky substrate are the lower end of range given in the MOA. SOD values for sandy substrate are the upper end of range given in the MOA.

- ³ These TSS concentrations are outside of the range given in the MOA, so the corresponding SOD values are estimated.
- ⁴ SOD values given in this table are the lower and upper ends of the recommended range. SOD values between the upper and lower values are acceptable based on nature of substrate.
- ⁵ Deviations from these rates may take place in situations of high instream dilution, which significantly reduces the impact of the benthal (sediment) deposits on oxygen consumption. In these situations, justification on a case by case basis will be provided in the documentation submitted to EPA.
- ⁶ Applicable ecoregions are based on the general characteristics of waterbodies within each ecoregion (Rocky, Gravel, or Mixed). A different substrate type may be used based on site specific observations of the particular stream in question.

Model Input Data

W.S. Drainage Area (mi^2) : 6.38 (Reach 1a, Mill Creek at outfall)

10.1 (Reach 1b, Mill Creek at confluence with White Oak Branch)

Ecoregion: Ozark Highlands

Q_{DESIGN}: 0.41 MGD

7Q10: 0 cfs (USGS StreamStats)

Input Model Coefficients

		Read	h 1:	a			
Coefficient – at 20° C	Inpu	ıt value		Justificatio	on		
BOD _{ult.} /BOD ₅	2.3			EPA Guid	ance		
$K_d(1/day)$	0.5			MOA, roc	ky substrate		
$K_n (1/day)$	0.3			MOA, roc	ky substrate		
SOD $(g/m^2/day)$	0.3	(critical season)		MOA, roc	ky substrate, TS	SS = 15	
	1.0	(primary season)	MOA, roc	ky substrate, TS	SS = 30	
$K_a (1/day)$	10.5	(critical seasor	ı)	O'Conner	Dobbins equati	on	
	9.0	(primary season)	O'Conner	Dobbins equati	on	
		Reac	h 11	b			
Coefficient – at 20° C	ıt value		Justificatio	on			
BOD _{ult.} /BOD ₅			EPA Guid	ance			
$K_d(1/day)$	0.5			MOA, roc	ky substrate		
$K_n (1/day)$	0.3			MOA, roc	ky substrate		
SOD $(g/m^2/day)$	0.3	(critical season)		MOA, roc	ky substrate, TS	SS = 15	
	1.0	(primary season)	MOA, roc	ky substrate, TS	SS = 30	
$K_a (1/day)$	10.5	(critical seasor	ı)	O'Conner Dobbins equation			
	9.0	(primary season)	O'Conner Dobbins equation			
	Ap	plicable Water	Qua	ality Standa	rds		
Critical Season (May-Oct.) Primary Season (NovA						on (NovApr.)	
		Reach 1a	I	Reach 1b	Reach 1a	Reach 1b	
D.O. Standard (mg/L)		2		5	6		
Temp. Standard (°C)		2	9		2	2	

Model Diagram

Critical Season Stream Hydraulics

Quick Calculator								
0 Headwater in CFS		0.0739796	0.5	0.5353916	0.4	25.2474	0.1	Accum
			FPS		Feet		Feet	MGD
0.41 Discharger 1 in MGD	Reach 1	Velocity	0.059	Depth	0.446	Width	24.124	0.410

Primary Season Stream Hydraulics

Quick Calculator								
0.36 Headwater in CFS	0.0	0739796	0.5	0.5353916	0.4	25.2474	0.1	Accum
		H	FPS		Feet		Feet	MGD
0.41 Discharger 1 in MGD	Reach 1 Ve	elocity	0.074	Depth	0.534	Width	25.233	0.643

Critical Season Model (20036_C.smp) 10/15/3.9/6 simulation (CBOD5/TSS/NH3/DO)

Cr i	itical Season	TABULAR MODEL OUTPUT		
	River Mile	DO (mg∕L)	BOD (mg∕L)	NH3 (mg/L)
1	1.00	6.00	23.00	3.90
2	0.95	5.58	22.12	3.78
3	0.90	5.40	21.27	3.67
4	0.85	5.35	20.45	3.55
5	0.80	5.35	19.67	3.44
6	0.75	5.39	18.91	3.34
7	0.70	5.44	18.18	3.24
8	0.65	5.49	17.49	3.14
9	0.60	5.55	16.82	3.04
10	0.55	5.61	16.17	2.95
11	0.50	5.67	15.55	2.86
12	0.45	5.72	14.95	2.77
13	0.40	5.78	14.38	2.69
14	0.35	5.83	13.83	2.60
15	0.30	5.88	13.30	2.52
16	0.25	5.93	12.78	2.45
17	0.20	5.97	12.29	2.37
18	0.15	6.02	11.82	2.30
19	0.10	6.06	11.37	2.23
20	0.05	6.10	10.93	2.16
21	-0.00	6.14	10.51	2.10

R	un information screen	
Name of receiving stream	Mill Creek	
Number of discharges	(max = 10)	1
Number of reaches	(max = 10)	1
Reaeration type	(O, T, M)	O' Connor-Dobb ins
Run title for screen disp	Critical Season	
Graphics printer type	(HP, FX, LQ, None)	None
Printed graph resolution	(Low, Med, High)	None

	Upstream River Parameters		Comments
Flow	(cfs)	0.00	7Q10 = 0
Temperature	(°C)	29.00	WQS Ozark High
Dissolved Oxygen	(mg/1)	5.50	72%sat ERstudy
5-Day BOD	(mg×1)	1.00	default
Ult. CBOD / 5-Day BOI)	2.30	default
рН	(su)	7.00	default
Ammonia	(mg/1)	0.10	default
Alkalinity	(mg/1)		
Upstream river mile		1.00	model length

	Parameters for I	ischarge 1	Comments
Flow	(MGD)	0.41	design flow
Temperature	(°C)	29.00	WQS Ozark High
Dissolved Oxygen	(mg/1)	6.00	permit
5-Day BOD	(mg/1)	10.00	permit
Ult. CBOD ≠ 5-Day BOD		2.30	default
рН	(su)	7.00	default
Ammonia	(mg/1)	3.90	permit
Alkalinity	(mg/1)		
Beginning of Reach Nu	mber	1	
Name of Discharger		Melbourne	

Critical Season	Parameters for Reach 1		Comments
Length	(mile)	1.00	model length
Velocity	(fps)	0.06	spreadsheet
Slope	(ft∕mile)	-0.00	
Average Depth	(ft)	0.45	spreadsheet
Temperature	(°C)	29.00	Calculated
BOD Removal Rate	(1∕day)	0.50	MDA, rocky sub
NH3 Decay Rate	(1∕day)	0.30	MDA, rocky sub
Sediment Oxygen Deman	d (g/m²/day)	0.51	k20=0.3(TSS=15)
Photosynthesis/respir	ation (mg/L/day)	-0.00	

Primary Season Model (22004_P.smp) 20/30/3.9/7 simulation (CBOD5/TSS/NH3/DO)

Primary Season		TABULAR MODEL OUTPUT		
	River Mile	DO (mg/L)	BOD (mg∕L)	NH3 (mg/L)
1	1.00	7.14	30.17	2.52
2	0.95	6.68	29.50	2.49
3	0.90	6.37	28.84	2.45
4	0.85	6.18	28.19	2.42
5	0.80	6.06	27.56	2.38
6	0.75	6.00	26.94	2.35
7	0.70	5.97	26.34	2.31
8	0.65	5.96	25.75	2.28
9	0.60	5.97	25.17	2.25
10	0.55	5.99	24.61	2.22
11	0.50	6.01	24.06	2.18
12	0.45	6.04	23.52	2.15
13	0.40	6.07	23.00	2.12
14	0.35	6.10	22.48	2.09
15	0.30	6.13	21.98	2.06
16	0.25	6.17	21.49	2.03
17	0.20	6.20	21.01	2.00
18	0.15	6.23	20.54	1.97
19	0.10	6.27	20.08	1.95
20	0.05	6.30	19.63	1.92
21	-0.00	6.33	19.19	1.89

Primary Season	Run information screen	
Name of receiving s	Mill Creek	
Number of discharge	s (max = 10)	1
Number of reaches	(max = 10)	1
Reaeration type	(O, T, M)	O'Connor-Dobbins
Run title for scree	Primary Season	
Graphics printer ty	pe (HP, FX, LQ, None)	None
Printed graph resol	ution (Low, Med, High)	None

Primary Season	Upstream River Parameters		Comments
Flow	(cfs)	0.36	seasonalf ishery
Temperature	(°C)	22.00	WQS Ozark High
Dissolved Oxygen	(mg/1)	7.40	85%sat ERstudy
5-Day BOD	(mg/1)	1.00	default
Ult. CBOD / 5-Day BOD		2.30	default
рН	(su)	7.00	default
Ammonia	(mg/1)	0.10	default
Alkalinity	(mg/1)	-0.00	
Upstream river mile		1.00	model length

Primary Season	Parameters for I)ischarge 1	Comments
Flow (MGD		0.41	design flow
Temperature	(°C)	22.00	WQS Ozark High
Dissolved Oxygen	(mg/1)	7.00	permit
5-Day BOD	(mg/1)	20.00	permit
Ult. CBOD ≠ 5-Day BOD		2.30	default
рН	(su)	7.00	default
Ammonia	(mg/1)	3.90	permit
Alkalinity	(mg/1)	-0.00	
Beginning of Reach Number		1	
Name of Discharger		Melbourne	

Primary Season	Parameters for I	Comments	
Length	(mile)	1.00	model length
Velocity	(fps)	0.07	spreadsheet
Slope	(ft∕mile)	-0.00	
Average Depth	(ft)	0.53	spreadsheet
Temperature	(°C)	22.00	Calculated
BOD Removal Rate	(1∕day)	0.50	MOA, rocky sub
NH3 Decay Rate	(1∕day)	0.30	MDA, rocky sub
Sediment Oxygen Demand	(g∕m²∕day)	1.12	k20=1.0(TSS=30)
Photosynthesis/respirat:	ion (mg/L/day)	-0.00	